
Survey on Different Process Models Used In
Software Development

Anu P Salim. , Chithra P. , Sreeja S.

M Tech CSE, Sree Buddha College of Engineering,
Alappuzha , India

Abstract-Professional system developers and the customers
they serve share a common goal of building information
systems that effectively support their objectives. In order to
ensure that cost-effective, quality systems are developed which
address an organization’s business needs, developers employ
some kind of system development Process Model to direct the
project’s life cycle. A software process model is actually an
abstract representation of a Process which often represent a
networked sequence of activities, objects, transformations,
and events that embody strategies for accomplishing software
evolution .There are a variety of process models in software
development and the purpose of this paper is to perform a
survey on different process models used in software
development.

I. INTRODUCTION

The process of developing and supporting software requires
many distinct tasks to be performed by different people in
some related sequences. When software engineers left to
perform tasks based on their own experience, background
and values they do not necessarily perceive and perform the
task the same way or in the same order. They sometimes do
not even perform the same task. This inconsistency causes
projects to take a longer time with poor end products and in
worst situations total project failure. Software process
models give guidance for systematically coordinating and
controlling the tasks that must be performed in order to
achieve the end product and the project Subjectives. It
presents a description of a process from some particular
perspective as:
1. Specification.
2. Design.
3. Validation.
4. Evolution.

II.PRIMARY APPROACHES
Most system development Process Models in use today
have evolved from three primary approaches: Ad-hoc
Development, Waterfall Model, and the Iterative process.

1. Ad-hoc Development
Early systems development often took place in a rather
chaotic and accidental manner, relying entirely on the skills
and experience of the individual staff members performing
the work .The Software Engineering Institute at Carnegie
Mellon University points out that with Ad-hoc Process
Models, “process capability is unpredictable because the
software process is constantly changed or modified as the
work progresses. Performance depends on the capabilities
of individuals and varies with their innate skills,
knowledge, and motivations .

Even in undisciplined organizations, however, some
individual software projects produce excellent results.
When such projects succeed, it is generally through the
heroic efforts of a dedicated team, rather than through
repeating the proven methods of an organization with a
mature software process. In the absence of an organization-
wide software process, repeating results depends entirely
on having the same individuals available for the next
project.

2. Waterfall Model

The waterfall model is the classical model of software
engineering. This model is one of the oldest models and is
widely used in government projects and in many major
companies. As this model emphasizes planning in early
stages, it ensures design flaws before they develop. In
addition, its intensive document and planning make it work
well for projects in which quality control is a major
concern. The pure waterfall lifecycle consists of several
non overlapping Stages. It is attributed with providing the
theoretical basis for other Process Models, because it most
closely resembles a “generic” model for software
development.It consists of the following steps:

System Conceptualization: System on conceptualization
refers to the consideration of all aspects of the targeted
business function or process,

Fig.1.The Waterfall Model

with the goals of determining how each of those aspects
relates with one another, and which aspects will be
incorporated into the system.

Systems Analysis:This step refers to the gathering of
system requirements, with the goal of determining how
these requirements will be accommodated in the system.
Extensive communication between the customer and the
developer is essential.

Anu P Salim. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2855-2860

www.ijcsit.com 2855

System Design : Once the requirements have been
collected and analyzed, it is necessary to identify in detail
how the system will be constructed to perform necessary
tasks. More specifically, the System Design phase is
focused on the data requirement, the software construction
,and the interface construction
Coding: Also known as programming, this step involves
the creation of the system software. Requirements and
systems specifications from the System Design step are
translated into machine readable computer code.
Testing. As the software is created and added to the
developing system, testing is performed to ensure that it is
working correctly and efficiently. Testing focused on two
areas: internal efficiency and external effectiveness. The
goal of external effectiveness testing is to verify that the
software is functioning according to system design, and
that it is performing all necessary functions or sub-
functions. The goal of internal testing is to make sure that
the computer code is efficient, standardized, and well
documented.
Problems/Challenges associated with the Waterfall
Model
Although the Waterfall Model has been used extensively
over the years in the production of many quality systems, it
is not without its problems. Criticisms fall into the
following categories:

 Real projects rarely follow the sequential flow that
the model proposes. At the beginning of most
projects there is often a great deal of uncertainty
about requirements and goals. The model does not
accommodate this natural uncertainty very well.

 Developing a system using the Waterfall Model
can be a long, painstaking process that does not
yield a working version of the system until late in
the process

Process Model
Just like the waterfall model, the V-Shaped model is a
sequential path of execution of processes. Each phase must
be completed before the next phase begins. The testing
procedures are developed early in the life cycle before any
coding is done, of the phases preceding implementation.
The high-level design phase focuses on system architecture
and design. An integration test plan is created in this phase
in order to test the pieces of the software systems ability to
work together. However, the low-level design phase lies
where the actual software components are designed, and
unit tests are created in this phase as well.

Fig.2. V-model

The implementation phase is, again, where all coding takes
place. Once coding is complete, the path of execution
continues up the right side of the V where the test plans
developed earlier are now put to use.
 Advantages
1. Simple and easy to use.
2. Each phase has specific deliverables.
3. Higher chance of success over the waterfall model due to
the early development of test plans during the life cycle.
4. Works well for small projects where requirements are
easily understood.

3. Iterative Development
The problems with the Waterfall Model created a demand
for a new method of developing systems which could
provide faster results, require less up-front information, and
offer greater flexibility. With Iterative Development, the
project is divided into small parts. This allows the
development team to demonstrate results earlier on in the
process and obtain valuable feedback from system users.
Often, each iteration is actually a mini-Waterfall process
with the feedback from one phase providing vital
information for the design of the next phase.
Problems/Challenges associated with the Iterative
Model
While the Iterative Model addresses many of the problems
associated with the Waterfall Model, it does present new
challenges. The user community needs to be actively
involved throughout the project. While this involvement is
a positive for the project, it is demanding on the time of the
staff and can add project delay.Informal requests for
improvement after each phase may lead to confusion -
controlled mechanism for handling substantive requests
needs to be developed.
The Iterative Model can lead to “scope creep,” since user
feedback following each phase may lead to increased
customer demands. As users see the system develop, they
may realize the potential of other system capabilities which
would enhance their work.

Fig.3. Iterative development model

Anu P Salim. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2855-2860

www.ijcsit.com 2856

III. VARIATIONS ON ITERATIVE DEVELOPMENT
A number of Process Models have evolved from the
Iterative approach. All of these methods produce some
demonstrable software product early on in the process in
order to obtain valuable feedback from system users or
other members of the project team. Several of these
methods are described below.

Prototyping
The Prototyping Model was developed on the assumption
that it is often difficult to know all of your requirements at
the beginning of a project. The Prototyping Model allows
for these conditions, and offers a development approach
that yields results without first requiring all information up-
front .When using the Prototyping Model, the developer
builds a simplified version of the proposed system and
presents it to the customer for consideration as part of the
development process. The customer in turn provides
feedback to the developer, who goes back to refine the
system requirements to incorporate the additional
information. There are a few different approaches that may
be followed when using the Prototyping model:
1. Development of an abbreviated version of the system
that performs a limited subset of functions.
2. Use of an existing system or system components to
demonstrate some functions that will be included in the
developed system.
Prototyping is comprised of the following steps:
Requirements Definition/Collection: The information
collected is usually limited to a subset of the complete
system requirements.
Design: Once the initial layer of requirements information
is collected, or new information is gathered, it is rapidly
integrated into a new or existing design so that it may be
folded into the prototype.
PrototypeCreation/Modification:The information from
the design is rapidly rolled into a prototype. Assessment:
The prototype is presented to the customer for review.
Comments and suggestions are collected from the
customer.
Prototype Refinement: Information collected from the
customer is digested and the prototype is refined.
System Implementation: In most cases, the system is
rewritten once requirements are understood. Sometimes,
the Iterative process eventually produces a working system
that can be the cornserstone for the fully functional system.

Problems/Challenges associated with the Prototyping
Model

 Criticisms of the Prototyping Model generally fall into the
following categories:
1. Prototyping can lead to false expectations.
Prototyping often creates a situation where the customer
mistakenly believes that the system is “finished” when in
fact it is not.
2. Prototyping can lead to poorly designed systems.
 Because the primary goal of Prototyping is rapid
development, the design of the system can sometimes
suffer because the system is built in a series of “layers”
without a global consideration of the integration of all other
components.

IV.MODERN SOFTWARE DEVELOPMENT CYCLES
1.Rapid Application Development (RAD) And Rapid
Prototyping
A popular variation of the Prototyping Model is called
Rapid Application Development (RAD).RAD introduces
strict time limits on each development phase and relies
heavily on rapid application tools which allow for quick
development.
Rapid application development (RAD) is an iterative
process that relies heavily on user involvement throughout
development. In RAD, the entire team meets at the
beginning of the process to determine requirements and a
fundamental project design.RAD teams break out of this
cycle by producing, reviewing, and refining a fundamental
prototype during the design phase. Once the project
requirements are defined, the developers model the
structure and interaction of the objects needed to implement
the requirements .
After the analysis and design is complete, the team
implements the design in a series of iterations. Each
iteration typically lasts several weeks, and implements the
subset of features that the team agreed to implement for
that iteration .The features implemented are almost always
based

Fig.4. RAD Model

on requirements set forth in the design phase; there is some
flexibility for refining existing requirements and adding
new ones, but only when the modifications will fit within
the original design.
After one iteration is completed, the customer can use the
product and if necessary then suggest any necessary
refinements. The next iteration will begin, and then the
team will continue cycling though iterations until the initial
design has been completely implemented.
RAD’s main advantages stem from its insistence on a
design phase. Because developers and customers agree on a
design before implementation begins, developers are aware
of the “big picture” while they are coding. Having a design
phase also helps the team to estimate project deadlines and
budgets. With RAD, the team always knows the overall
project parameters and milestones that must be met before
the project is considered complete.
RAD is used for a project that is very dynamic or whose
scope is difficult to define upfront, problems are likely
because RAD is not designed to accommodate substantial
change.

Anu P Salim. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2855-2860

www.ijcsit.com 2857

2.Incremental Development Model
The incremental process is well-suited for situations where
there is some general project direction, but the product is
continually redefined via the addition of different features.
This approach is well-suited to innovative projects because
their short iteration times allow the team to quickly show
the customer the results of the latest request. This allows
for rapid feedback on the success of the most recent
iteration and the direction of the next. Such frequent and
rapid feedback is not necessary for traditional projects
(such as building a standard accounting or database
program for internal use), but is critical for more innovative
projects

3.Spiral model
The spiral software development model proposed by
Boehm in 1988 was based mostly on experience from
working with large projects using the waterfall approach.
This risk analysis–oriented approach is depicted in Figure .

Fig.5.Incremental development model

The radial dimension of this figure represent cumulative
cost incurred in accomplishing the steps to date; the angular
dimension represents the progress made in completing each
cycle of the spiral.Each cycle starts with a requirements
phase followed by risk analysis and prototyping, then
modelling , coding, testing, and finally deployment.
Areas of uncertainty that are significant sources of project
risk are identified and re-evaluated at the beginning of each
cycle. Then, a strategy for resolving such risks is proposed
based on prototyping,simulation, or benchmarking. Next,
phase-specifi c tasks are accomplished; these tasks include
requirements specification and validation, software design
and design validation,detailed design, coding, followed by
unit, integration, and acceptance testing, and culminating in
the product deployment (which Boehm called
implementation).
The risk-driven approach in the spiral model
accommodates a project specific mix of software
development strategies . The important feature of the spiral
model is that each cycle is completed by a user review,
whose major objective is to ensure that users are satisfied
with the current progress and committed to the next phase.

Fig.6. Spiral model

The spiral model has been used successfully in large
software projects. Its risk-adverse approach, which is its
primary advantage, eliminates many potential problems and
accommodates the best features of more development
specific methodologies.

4.The Exploratory Model
In some situations it is very difficult, if not impossible, to
identify any of the requirements for a system at the
beginning of the project. Theoretical areas such as
Artificial Intelligence are candidates for using the
Exploratory Model, because much of the research in these
areas is based on guess-work, estimation, and hypothesis.
In these cases, an assumption is made as to how the system
might work and then rapid iterations are used to quickly
incorporate suggested changes and build a usable system. A
distinguishing characteristic of the Exploratory Model is
the absence of precise specifications .The Exploratory
Model is extremely simple in its construction; it is
composed of the following steps:
Initial Specification development: Using whatever
information is immediately available, a brief System
Specification is created to provide a rudimentary starting
point.
System construction/Modification: A system is created or
modified according to whatever information is available.
System Test: The system is tested to see what it does, what
can be learned from it, and how it may be improved.
System Implementation: After many iterations of the
previous two steps produce satisfactory results, the system
is dubbed as “finished” and implemented.
Problems/Challenges associated with the Exploratory
Model
There are numerous criticisms of the Exploratory Model:

 It is limited to use with very high-level languages
that allow for rapid development, such as LISP.

 It is difficult to measure or predict its cost-
effectiveness.

 As with the Prototyping Model, the use of the
Exploratory Model often yields inefficient or
crudely designed systems, since no forethought is
given as to how to produce a streamlined system.

Anu P Salim. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2855-2860

www.ijcsit.com 2858

5.The Reuse Model
The basic premise behind the Reuse Model is that systems
should be built using existing components, as opposed to
custom-building new components. The Reuse Model is
clearly suited to Object-Oriented computing environments,
which have become one of the premiere technologies in
today’s system development industry.Within the Reuse
Model, libraries of software modules are maintained that
can be copied for use in any system. These components are
of two types: procedural modules and database modules.
When building a new system, the developer will “borrow”
a copy of a module from the system library and then plug it
into a function or procedure. If the needed module is not
available, the developer will build it, and store a copy in the
system library for future usage. If the modules are well
engineered, the developer with minimal changes can
implement them.
The Reuse Model consists of the following steps:

 Definition of Requirements. Initial system
requirements are collected. These requirements are
usually a subset of complete system requirements.

 Definition of Objects. The objects, which can
support the necessary system components, are
identified.

 Collection of Objects. The system libraries are
scanned to determine whether or not the needed
objects are available. Copies of the needed objects
are downloaded from the system.

 Creation of Customized Objects. Objects that
have been identified as needed, but that are not
available in the library are created.

 Prototype Assembly. A prototype version of the
system is created and/or modified using the
necessary objects.

 Prototype Evaluation. The prototype is
evaluated to determine if it adequately addresses
customer needs and requirements.

 RequirementsRefinement. Requirements are
further refined as a more detailed version of the
prototype is created.

 Objects Refinement. Objects are refined to
reflect the changes in the requirements.

Problems/Challenges Associated with the Reuse Model
A general criticism of the Reuse Model is that it is limited
for use in object-oriented development environments.
Although this environment is rapidly growing in popularity,
it is currently used in only a minority of system
development applications.

6.Object-Oriented Unified Process
By the time that object-oriented methods had gained
widespread acceptance in the software engineering
community in the early 1990s.To complement UML, a
unified process model was developed . (The unified process
is sometimes called Rational Unified Process (RUP) after
the Rational Corporation, primary builder of the original
software tools to support UML and the unified
process.).The unified process utilizes iterative and
incremental development, and it builds on the best features

of other models, emphasizing communication with
customers and the implementation of use cases as the best
methods for describing the customer’s view of a system. It
also takes an “architecture-first” approach, stressing the
importance of a high-level system design capable of
adapting to future changes and reuse.Phases of the unified
process include inception, elaboration,
construction,transition, and production. The inception
phase encompasses both customer communication and
planning activities. The elaboration phase consists of
planning and modeling. This phase refines the preliminary
use cases defined

Fig.7.Object oriented unified process

In the construction phase, all the necessary features of the
software (or its increment, or release), as defined by the use
cases, are implemented.
In addition, unit tests, integration tests, and acceptance tests
driven by use cases are conducted. The transition phase
includes beta testing by users, which results in user
feedback on defects and functionality problems. At the end
of this phase, software release takes place. During the
phase following the release, referred to as the production
phase of the unified process, the functioning software is
monitored to eliminate possible defects and make requested
changes. An important feature of the unified process is that
in addition to being iterative and incremental, it employs a
high degree of parallel development, with its stages being
staggered rather than sequential.

7.Extreme And Agile Programming
Extreme programming (XP) assumes that product
requirements will change,so the application is designed and
developed incrementally in a series of brief design-coding-
testing iterations .During each iteration’s design phase, the
user provides a list of “stories” she would like
implemented, the developer estimates the time required to
implement each story, and then the user decides what to
implement in the current iteration. The team then
determines how to divide the work. During the
implementation phase, the developers might work in pairs
(paired programming): each pair writes unit tests before
they code each unit, then writes the unit with one developer
coding and the other watching for design flaws, lgorithmic

Anu P Salim. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2855-2860

www.ijcsit.com 2859

errors, and general coding problems. They then verify
whether the unit is correct by running all relevant tests the
team has accumulated. On a daily basis, each pair
integrates their thoroughly tested code into the application.
At the end of each iteration, the customer has a working
(but not fullfeatured)product to use. The customer provides
feedback on the current iteration as the team begins the
next design phase. The new iteration might implement
features previously requested, incorporate features that
satisfy new business requirements, or refine existing
features. Code quality improves when XP is used because
XP promotes defect prevention in the following ways:

1.Testing occurs throughout the development process,
instead of just at the end.

Fig.8.Extreme and Agile programming

2. By utilizing paired programming, XP prompts
developers to engage in perpetual code review, and it
encourages developers to follow coding standards
that avoid confusing and dangerous coding constructs.
Other advantages of XP include:

 It has the ability to accommodate the frequent
changes and unexpected requirements common in
today’s development environments.

 Its insistence on producing correct code and
frequently integrating it into the application means
that the product can almost always be shown to
the customers in a workable state.

V.CONCLUSION
The evolution of system development Process Models has
reflected the changing needs of computer customers. As
customers demanded faster results, more involvement in
the development process, and the inclusion of measures to
determine risks and effectiveness, the methods for
developing systems changed. In addition, the software and
hardware tools used in the industry changed (and continue
to change) substantially. Faster networks and hardware
supported the use of smarter and faster operating systems
that paved the way for new languages and databases, and
applications that were far more powerful than any
predecessors.
New models for software development enabled by the
Internet group facilitation and distant coordination within
open source software communities, and shifting business
imperatives in response to these conditions are giving rise
to a new generation of software processes and process
models. These new models provide a view of software
development and evolution that is incremental, iterative,
ongoing, interactive, and sensitive to social and
organizational circumstances, while at the same time,
increasingly amenable to automated support, facilitation,
and collaboration over the distances of space and time.

REFERENCES

[1] Martin, J., Rapid Application Development. Prentice-Hall, 1991.
[2] Boehm, B., A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy,

Using the WinWin Spiral Model: A Case Study, Computer, 31(7),
33-44, 1998.

4] Boehm, B.W., “A Spiral Model of Software Development and
Enhancement,” IEEE Computer, Vol. 21, No. 5, May 1988, pp. 61–
72.

[5] Jacobson, I., Booch, G., and Rumbaugh, J., The Unifi ed Software
Development Process. Addison-Wesley, 1999.

[6] Bolcer, G.A., R.N. Taylor, Advanced workflow management
technologies, Software Process--Improvement and Practice, 4,3,
125-171, 1998.

 [7] Chatters, B.W., M.M. Lehman, J.F. Ramil, and P. Werwick,
Modeling a Software Evolution Process: A Long-Term Case Study,
Software Process Improvement and Practice, 5(2-3), 91 102,2000.

[8] B. Curtis, H. Krasner, V. Shen, and N. Iscoe, On Building Software
Process Models Under the Lamppost, Proc. 9th. Intern. Conf.
Software Engineering, IEEE Computer Society, Monterey, CA, 96-
103, 1987.

[9] Curtis, B., H. Krasner, and N. Iscoe, A Field Study of the Software
Design Process for Large Systems, Communications ACM, 31, 11,
1268-1287, November, 1988.

[10] Cusumano, M. and D. Yoffie, Software Development on Internet
Time, Computer, 32(10), 60-69, 1999.

[11] Walt Scacchi, Institute for Software Research, University of
California, Irvine,Process Models Engineering,February 2001.

Anu P Salim. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2855-2860

www.ijcsit.com 2860

